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KANT, G. J., J. L. MEYERHOFF, B. N. BUNN ELL AND R. H. LENOX. Cyclic AMP and cyclic GMP response to stress in 
brain and pituitao': Stress elevates pituitao" cyclic AMP. PHARMAC. BIOCHEM. BEHAV. 17(5) 1067-1072, 1982.--Male 
rats were exposed to six stressors (saline injection, cold, forced running, Formalin injection, immobilization, electric 
footshock) for 15, 30, or 60 min. Following sacrifice by microwave irradiation, cyclic AMP and cyclic GMP levels were 
measured in pituitary, pineal and 8 regions of rat brain. All stressors except saline increased plasma corticosterone, plasma 
prolactin and pituitary cyclic AMP levels compared to control animals. The magnitude of the pituitary cyclic AMP response 
was highly correlated with the intensity of the stress as determined by the levels of plasma prolactin. Electric footshock 
increased pituitary cyclic AMP levels over 10 fold and plasma prolactin over 60 fold. Cyclic AMP levels in other brain 
regions were not altered. Cerebellar cyclic GMP was increased only by stressors that involved increased motor activity. 

Pituitary Stress Cyclic AMP Cyclic GMP Cerebellum Prolactin Corticosterone 
Growth hormone 

A C U T E  stress act ivates  a mult i tude of  neuroendocr ine  and 
neurochemica l  responses  [33]. Stress releases hormones  in- 
cluding /3-endorphin, prolactin,  and adrenocor t ico t ropic  
hormone  (ACTH)  from the pituitary, while growth hormone 
secret ion in rats is suppressed [10, 16, 21, 23, 39, 45]. Cen- 
trally, the tu rnover  of  norepinephrine (NE),  dopamine  (DA) 
and serotonin (5-HT) is increased in some brain regions fol- 
lowing stress [2, 6, 7, 38, 42, 48, 50, 51]. 

Adenos ine  3 ' , 5 ' -monophospha te  (cyclic AMP) and 
guanosine 3 ' , 5 ' -monophospha te  (cyclic GMP) function as 
second messengers  in the CNS as well as the per iphery,  
mediat ing the effects  of  neurotransmit ters  and hormones  at 
some receptors  [3, 20, 46]. In the pituitary gland, cyclic A M P  
appears  to be involved in the release and/or  synthesis of  
pituitary hormones .  Incubat ion of  pituitaries in vitro with 
cyclic A M P  analogues increases the release of  hormones  into 
the medium [24, 43, 44]. Moreove r ,  neurot ransmit ters  and 
releasing factors have been reported to increase pituitary 
cyclic A M P  levels  in vitro [4, 13, 26, 41, 53]. In previous  
studies we have found that pituitary cyclic A M P  levels in 

vivo are responsive  to dopaminergic ,  cholinergic,  and ad- 
renergic agonists [17, 18, 28, 35]. 

In order  to determine accurate  in vivo levels of  cyclic 
A M P  free of  pos tmor tem artifact, we sacrificed the rats in 
our  studies using a high power  microwave  system. This sac- 
rifice technique required brief  (30 sec) immobil izat ion of  the 
rat in a plastic applicator  tube which,  by itself, was without  
effect  upon cyclic nucleot ide levels  (unpublished data). 
When we invest igated the effect  of  longer  periods of  im- 
mobil izat ion on cyclic A M P  and cyclic G M P  levels in var- 
ious regions of  the brain, we found that immobil izat ion for 15 
minutes increased levels of  cyclic A M P  in the pituitary but 
did not affect levels of  cyclic A M P  in any other  brain region 
[34]. Al though other  invest igators have suggested that stress 
e levates  cerebel lar  cyclic GMP [8,9], we found that cerebel-  
lar cyclic GMP levels were  decreased  following 15 min of  
immobil izat ion.  

We hypothes ized  that o ther  stressors in addition to im- 
mobil izat ion might increase pituitary cyclic A M P  in vivo,  
possibly via central  release of  neurot ransmit ters  or  releasing 
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factors into the portal circulation. In addition, cyclic nucleo- 
tide levels in other brain regions might be responsive to in- 
creased neurotransmitter turnover after different stressors. 

METHOD 

Animals 

Male rats (Wistar-derived from the Walter Reed Colony) 
were handled for two weeks prior to the experiment to 
minimize non-specific stress effects. Animals were individ- 
ually housed and food and water were freely available. All 
experiments were performed between 0830 and 1230 to 
minimize circadian effects. 

Stressors 

Six putative stressors (cold, forced running, saline injec- 
tion (IP), Formalin injection (SC), immobilization and elec- 
tric footshock) were tested at each of three time points; 15, 
30 and 60 rain duration. The six stress paradigms were per- 
formed as follows: Animals subjected to cold were first 
sprayed with tap water to wet their fur and then returned to 
their home cage which was placed in a 4°C chamber. Forced 
running was applied by placing the rats in a motorized run- 
ning wheel (diameter=38 cm) at 5 rpm. After a single saline 
(IP) or Formalin (SC) injection, animals were returned to 
their home cage until sacrificed. Animals were immobilized 
in the 5.7 cm diameter plastic cylinder used as the applicator 
in the microwave inactivation system used for sacrifice. 
Electric footshock was delivered in a shock chamber on a 
variable time schedule with a shock duration of 5 sec and an 
average intershock interval of 30 sec. Six animals were 
sacrificed for each condition at each of three time points. In 
addition, 12 control rats were removed from their home 
cages and sacrificed immediately. 

Assay Procedures 

All animals were sacrificed by high-power microwave ir- 
radiation for 5 sec [5, 27, 30, 36]. Following microwave ir- 
radiation, the rats were decapitated and trunk blood was 
collected and the plasma stored for subsequent hormone as- 
says. The heads were cooled on dry ice and the following 
brain regions were dissected: pituitary, pineal, cerebellum, 
hypothalamus, septal region, frontal cortex, striatum, ven- 
tral striatum (n. accumbens plus olfactory tubercle), olfac- 
tory bulb and interpeduncular region, The tissue pieces were 
weighed and sonicated in 50 mM sodium acetate buffer pH 
6.2. The sonicates were centrifuged at 25,000 × g for 15 
minutes and the supernatants were stored at -70°C until 
assayed. Cyclic AMP and cyclic GMP were determined 
using antibodies developed and characterized in our labora- 
torie s [29, 31,49]. For measurement of the cyclic nucleotides 
in the smaller brain regions, a modification of the method 
described by Harper and Brooker [14] was employed. Highly 
specific antisera were used at usual final dilutions of 
1:400,000 for cyclic AMP and 1:20,000 for cyclic GMP. The 
data was analyzed by computer using a nonlinear four pa- 
rameter logistic model weighted for nonuniformity of vari- 
ance [47]. 

Prolactin and growth hormone were determined by 
radioimmunoassay using materials provided by the NIAMD 
and the results are expressed in terms of ng/ml of the RP-1 
standards. Rat plasma samples were assayed for corticoste- 
rone by radioimmunoassay using an antibody produced in 
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FIG. 1. Hormone levels in rats following stress. Controls were sac- 
rificed immediately upon removal from home cage. Stressors are 
described in the text. Vertical bars are Mean_+SEM, N=6 rats. Data 
were analyzed by one way analysis of variance, *p<0.05. 
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FIG. 2. Pituitary cyclic AMP levels in rats following stress. See Fig. 
1 legend for details. 

our laboratory in rabbit against corticosterone-21- 
hemisuccinate: BSA [29]. 

Statistics 

An overall analysis of variance was performed for each 
region for each nucleotide. In Figs. 2 and 3, all stress groups 
were included in the analysis. For Tables 1,2, and 3 only the 
displayed data were included. If analysis of variance re- 
vealed a significant F ratio, then post hoc t-tests between 
control and individual stress groups were performed. 

RESULTS 

As judged by the plasma corticosterone response, all 
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T A B L E  1 

CYCLIC AMP LEVELS IN PITUITARY, PINEAL AND BRAIN FOLLOWING FOOTSHOCK 

Cyclic AMP (pmole/mg wet weight) 

Region Control Shock-15 Shock-30 Shock-60 

Pituitary 1.06 - 0.09 10.1 + 2.3* 13.6 ± 3.2* 10.2 ± 2.1" 
Hypothalamus 1.04 + 0.06 1.10 ± 0.10 1.20 + 0.09 1.04 + 0.06 
Interp. n. 1.16 _+ 0.15 1.36 ± 0.13 1.43 + 0.17 1.29 ± 0.21 
Frontal ctx. 1.28 ± 0.14 1.25 ± 0.09 1.22 ± 0.06 1.41 ± 0.24 
Ven. striatum 0.646 ± 0.046 0.704 ± 0.056 0.767 ± 0.050 0.638 + 0.053 
Striatum 0.458 _+ 0.033 0.523 _+ 0.095 0.466 _+ 0.036 0.425 ± 0.024 
Septal region 0.568 _+ 0.044 0.594 ± 0.057 0.589 ± 0.038 0.647 + 0.091 
Olfactory bulb 1.10 + 0.04 1.07 ± 0.10 0.838 ± 0.146 0.909 + 0.048 
Cerebellum 0.827 _+ 0.031 0.798 _+ 0.037 0.806 ± 0.047 0.672 ± 0.046* 
Pineal 2.40 _+ 0.31 3.05 ± 0.41 3.97 + 0.52 2.61 ± 0.40 

(pmole/pineal) 

Values represent Mean_+SEM. N=6. *Differs significantly from control, p<0.05. 

T A B L E  2 

CYCLIC GMP LEVELS 1N PITUITARY, PINEAL AND BRAIN FOLLOWING FOOTSHOCK 

Cyclic GMP (pmole/mg wet weight) 

Region Control Shock- 15 Shock-30 Shock-60 

Pituitary 0.077 _+ 0.007 0.091 -+ 0.017 0.084 ± 0.009 0.081 ± 0.014 
Hypothalamus 0.066 -- 0.005 0.106 - 0.011" 0.113 ± 0.007* 0.115 ± 0.012" 
Interp. n. 0.075 ± 0.005 0.146 ± 0.024* 0.144 ± 0.016" 0.171 ± 0.043* 
Frontal ctx. 0.090 + 0.010 0.091 + 0.008 0.085 + 0.008 0.088 + 0.009 
Ven. striatum 0.100 _+ 0.006 0.115 -+ 0.007 0.097 _+ 0.010 0.101 +_ 0.005 
Striatum 0.065 _+ 0.003 0.093 -+ 0.017 0.063 ± 0.006 0.073 _+ 0.004 
Septal region 0.089 + 0.005 0.126 ÷ 0.013" 0.114 ÷ 0.008* 0.098 + 0.008 
Olfactory bulb 0.079 _+ 0.004 0.089 + 0.006 0.095 _+ 0.018 0.081 _+ 0.009 
Cerebellum 1.18 _+ 0.46 3.34 +- 0.49* 2.47 _+ 0.32* 2.50 _+ 0.33* 
Pineal 0.295 _+ 0.051 1.41 _+ 0.42* 0.724 _+ 0.194 0.651 +_ 0.106 

(pmole/pineal) 

Values represent Mean±SEM. N=6. *Differs significantly from control, p<0.05. 
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tes ted condi t ions  excep t  saline injection appeared  to be 
stressful  to the rats.  As shown in Fig. I, co r t i cos te rone  levels 
were  increased  5-fold after all t es ted  s t ressors  excep t  saline 
injection. Prolactin r e sponded  rapidly to the s t ressors .  There 
was an increase  in p lasma prolact in even  after  saline injec- 
tion and shock  caused  a 60-fold increase  in prolact in  levels. 
Plasma growth  h o r m o n e  levels general ly dec reased  with 
stress:  Control  253_ + 131 ng/ml; saline (60 rain) 84_+27 ng/ml; 
cold (60 min) 15_+3 ng/ml; running (60 min) 13-+2 ng/ml; 
Formalin  (60 min) 18_+7; immobi l iza t ion (60 min) 15-+4 
ng/ml; shock (60 min) 16_+4 ng/ml. 

All s t ressors  excep t  saline increased  pituitary cyclic A M P  
compared  to cont ro ls  as shown in Fig. 2; however ,  the in- 
c reases  after cold and running were  not  statistically signifi- 
cant .  There  were  no significant effects  o f  any s t ressor  on 
cyclic A M P  levels in any o ther  region examined ,  with the 
excep t ion  of  a dec rease  in cerebel la r  cyclic A M P  in the 
60 min shock  group.  Leve ls  o f  cyclic A M P  in all brain re- 
gions examined  following shock are shown in Table 1. 

The increases  in cerebel la r  cyclic G M P  (Fig. 3) seen after 

cer tain s t ressors  appear  to be related to the change in motor  
activity p roduced  by some s t ressors  and not related to the 
s t ress  itself. S t ressors  such as cold,  running,  and foo t shock  
increased cerebel la r  cyclic GMP,  while Formal in  and im- 
mobil izat ion did not.  In fact ,  immobil izat ion,  which obvi- 
ously dec reases  mo to r  activity,  resul ted in decreased  cyclic 
G M P  levels in the cerebel lum.  Similarly, cyclic GMP levels 
in some o the r  brain regions were  increased after shock (Ta- 
ble 2) but not  af ter  immobil izat ion (Table 3). 

DISCUSSION 

The results  o f  these  studies indicate that  pituitary cyclic 
A M P  is r e spons ive  to s t ress .  The elevat ion in pituitary cyclic 
A M P  appeared  to be proport ional  to the apparen t  severi ty of 
the s t ressor  as judged  by p lasma prolactin response ,  with the 
most  severe  s t ressors  having the greates t  effect .  Cyclic A M P  
media tes  the act ions  of  many neuro t ransmi t t e r s  and hor- 
mones  at par t icular  sites. Poss ibly ,  h o rmo n es  re leased by 
s t ress  feedback  on the pituitary and initiate the cyclic AMP 
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T A B L E  3 

CYCLIC GMP LEVELS IN PITUITARY, PINEAL, AND BRAIN FOLLOWING IMMOBILIZATION 

Cyclic GMP (pmole/mg wet weight) 

Region Control Immob.-15 Immob.-30 Immob.-60 

Pituitary 0.077 _+ 0.007 0.098 +__ 0.031 0.065 -+ 0.011 0.057 _+ 0.004 
Hypothalamus 0.066 _+ 0.005 0.073 +_ 0.006 0.066 _+ 0.005 0.076 ÷ 0.012 
Interp. n. 0.075 _+ 0.005 0.072 _+ 0.008 0.071 _+ 0.012 0.085 _+ 0.015 
Frontal ctx. 0.090 -+ 0.010 0.079 _+ 0.006 0.088 -+ 0.009 0.080 _+ 0.012 
Ven. striatum 0.100 - 0.006 0.099 _+ 0.014 0.099 -+ 0.014 0.081 _+ 0.005 
Striatum 0.065 _+ 0.003 0.058 _+ 0.004 0.073 _+ 0.014 0.063 _+ 0.010 
Septal region 0.089 -+ 0.005 0.101 _+ 0.007 0.100 _+ 0.014 0.095 _+ 0.007 
Olfactory bulb 0.079 _+ 0.004 0.066 _+ 0.006 0.078 _+ 0.009 0.082 _+ 0.009 
Cerebellum 1.18 -+ 0.46 0.521 _+ 0.087 0.365 -+ 0.044 0.454 ÷ 0.110 
Pineal 0.295 -+ 0.051 0.180 _+ 0.036 0.180 _+ 0.036 0.209 _+ 0.048 

(pmole/pineal) 

Values represent Mean_+SEM. N=6. 
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FIG. 3. Cerebellar cyclic GMP levels in rats following stress. See 
Fig. 1 legend for details. 

response.  The  e levated cyclic A M P  might serve  to regulate 
fur ther  ho rmone  release or  as a signal for hormonal  synthe- 
sis. Al ternat ive ly ,  central ly der ived  t ransmit ters  or  releasing 
hormones  might act direct ly to e levate  pituitary cyclic A M P  
in a selected cell subtype.  The  cycl ic  A M P  could then alter 
the release or  synthesis  of  pituitary hormones  [25] and link 
s t ress-act ivated central  circuits with pituitary hormonal  out- 
put. 

Biogenic amines have been implicated in the control  of  
various pituitary hormones  including growth hormone ,  
prolactin,  A C T H  and the gonadotropins  [1, 32, 40]. We have 
found that pituitary cyclic A M I  ~ levels  increase in v ivo  after 
administrat ion of  several  neuro t ransmi t te r  agonists including 
apomorphine ,  isoproterenol ,  oxo t remor ine  and nicotine [17, 
18, 28, 35]. Increased central turnover  o f  N E ,  DA,  acetyl- 
choline or other  transmitters caused by stress could directly or  
indirectly impinge upon pituitary cyclic AMP. 

Since some ca techolamine  receptors  in the C N S  are 
thought  to be l inked to adenylate  cyclase  [15,19] and, since 
ca techolamine  tu rnover  is increased by stress,  we also exam- 
ined the cyclic A M P  response  to stressors in regions of  the 

brain containing N E  and DA terminals.  Although both the 
mesol imbic  DA pathway [11,52] and the cells of  the locus 
coeruleus  are act ivated by stress [22], none of  the respect ive 
projection areas had increased levels of  cyclic AMP (Table 1). 

Cerebel lar  cyclic G M P  has been reported to be a 
b iochemical  marker  for stress. Early studies reported that 
cycl ic  G M P  was elevated by cold, forced swimming and ex- 
posure  to a hot  plate [8,9]. The lack of  a cyclic G M P  increase 
fol lowing immobil izat ion prompted  us to invest igate the role 
o f  motor  act ivi ty in the cerebeUar cyclic GMP elevat ions 
repor ted  by others.  We found that cerebel lar  cyclic GMP 
increased with voluntary motor  activity [34,37]. In the study 
repor ted  here with a variety of  stressors,  it is also clear that 
activity rather than stress is responsible for e levated cyclic 
G M P  levels  in cerebel lum and other  brain areas. 

As expected ,  stress increases plasma prolactin and corti-  
cos terone  and decreased  growth hormone.  This has been 
demonst ra ted  previously by our  laboratory and others  
[23,29]. In this exper iment  where  different stressors were 
examined  in the same study, a difference in response to 
stress by prolactin and cor t icos terone  can be seen. All stres- 
sors maximally e levated cor t icos terone within 15 minutes.  In 
contrast ,  prolactin response  appears  proport ional  to the sev- 
erity of  the stressor.  Although plasma prolactin is known to 
increase following var ious stressors in rats and humans I 12], 
the function of  the prolactin response to stress is not known.  

In summary,  we have shown that pituitary cyclic AMP 
increases after acute stress. The ampli tude of  the increase 
seem to be highly correlated with the intensity of  the stress 
response  as measured  by prolactin release.  In contrast ,  
cerebeUar cyclic G M P  which has been postulated to be a 
sensi t ive marker  for stress appears to be responsive only to 
the increased motor  act ivi ty evoked  by some stressors.  The  
mechan ism and function of  the pituitary cyclic A M P  re- 
sponse is not clear  at present ,  but the possibili ty that cyclic 
A M P  may link central ly-mediated release of  neuroact ive  
compounds  with pituitary hormonal  output  remains an at- 
t ract ive hypothesis .  
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